Cognitive dimensions of orthographic stimuli affect occipitotemporal dynamics

Previous research documented letter-string specific cortices in the ventral visual stream near the left occipitotemporal junction (i.e., anterior fusiform gyrus). These neural areas potentially code the perceptual elements comprising orthographic stimuli, and thus function as feature detectors in high-level vision. While abundant evidence supports this region's role in detecting isomorphic perceptual features, any influence cognitive dimensions (e.g., the lexicality of letter-strings) may play in modulating this area's processing remains an open question. To investigate this, we examined the spatiotemporal dynamics of high-density magnetoencephalographic signals, recorded as subjects completed a rhyme-judgment task on stimuli varying in the cognitive property of lexicality. Our data demonstrate that the time course of occipitotemporal cortices discriminates cognitive attributes of orthographic stimuli. The dynamics in this brain region may indicate interactive processes unfolding later in the time course, when more anterior fronto-temporal circuits are activated by semantic correlates of real words.

Neural Correlates of Spatial Judgement during Object Construction in Parietal Cortex

We recorded the activity of parietal area 7a neurons in monkeys performing an object construction task. In each trial, a model object consisting of a variable arrangement of squares was presented, followed after a delay by a copy of the model object that was missing a single square. Monkeys replaced the missing square to reconstruct the model configuration. Activity of many 7a neurons varied systematically with the position of the missing square and predicted where monkeys were going to add parts to the object they were building. The location of the missing square was a computed spatial datum important to object construction which did not correlate with the retinal location of a visual stimulus or the direction of the required motor response. The population of cells coding this coordinate was generally inactive when the same spatial locations were made relevant by visual targets to which monkeys either planned saccades or directed...

Mental maze solving: directional Functional Magnetic Resonance ImagingFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. tuning and population coding in the superior parietal lobule

The superior parietal lobule (SPL) of six human subjects was imaged at 4 T during mental traversing of a directed maze path. Here we demonstrate the orderly involvement of the SPL in this function, as follows. Forty-two percent of the voxels were tuned with respect to the direction of the maze path. This suggests a coherent tuning of local neuronal populations contributing to the change of the single-voxel BOLD signal. Preferred directions ranged throughout the directional continuum of 360°. Voxels with similar preferred directions tended to cluster together: on average there were seven same-direction clusters per slice, with an average cluster membership of five voxels/cluster and an average nearest-neighbor same-direction intercluster distance of 13.1 mm. On the other hand, the average nearest-neighbor intercluster distance between a given direction and all other directions was 3.1 mm. This suggests a patchy arrangement such that patches of directionally tuned voxels, containing voxels with different...

Logarithmic transformation for high-field BOLD Functional Magnetic Resonance ImagingFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. data

Parametric statistical analyses of BOLD Functional Magnetic Resonance ImagingFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. data often assume that the data are normally distributed, the variance is independent of the mean, and the effects are additive. We evaluated the fulfilment of these conditions on BOLD fMRIFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. data acquired at 4 T from the whole brain while 15 subjects fixated a spot, looked at a geometrical shape, and copied it using a joystick. We performed a detailed analysis of the data to assess (a) their frequency distribution (i.e. how close it was to a normal distribution), (b) the dependence of the standard deviation (SD) on the mean, and (c) the dependence of the response on the preceding baseline. The data showed a strong departure from normality (being skewed to the right and hyperkurtotic), a strong linear dependence of the SD on the mean, and a proportional response over the baseline. These results suggest the need for a logarithmic transformation. Indeed, the...

Time series analysis of magnetoencephalographic data during copying

We used standard time series modeling to analyze magnetoencephalographic (Magnetoencephalography Magnetoencephalography (MEG)A noninvasive technique that detects magnetic fields above the surface of the head produced by postsynaptic potentials in the brain.) data acquired during three tasks. Each task lasted 45 s, for a total data acquisition period of 135 s. Ten healthy human subjects fixated their eyes on a central blue point for 45 s (fixation only, "F" task). Then a pentagon (visual template) appeared surrounding the fixation point which simultaneously became red (fixation + template, "FT" task). After 45 s, the fixation point changed to green, which was the "go" signal for the subjects to begin continuously copying the pentagon for 45 s using a joystick and without visual feedback of their movement trajectory (fixation + template + copying, "FTC" task). MEGMagnetoencephalography (MEG)A noninvasive technique that detects magnetic fields above the surface of the head produced by postsynaptic potentials in the brain. data were acquired continuously from 248 axial gradiometers at a sampling rate of 1017.25 Hz. After removal of cardiac artifacts and rejection of records with eyeblink artifacts, a Box-Jenkins autoregressive integrative moving average (ARIMA) analysis was applied to the...

A phenomenological theory of spatially structured local synaptic connectivity

The structure of local synaptic circuits is the key to understanding cortical function and how neuronal functional modules such as cortical columns are formed. The central problem in deciphering cortical microcircuits is the quantification of synaptic connectivity between neuron pairs. I present a theoretical model that accounts for the axon and dendrite morphologies of pre- and postsynaptic cells and provides the average number of synaptic contacts formed between them as a function of their relative locations in three-dimensional space. An important aspect of the current approach is the representation of a complex structure of an axonal/dendritic arbor as a superposition of basic structures-synaptic clouds. Each cloud has three structural parameters that can be directly estimated from two-dimensional drawings of the underlying arbor. Using empirical data available in literature, I applied this theory to three morphologically different types of cell pairs. I found that, within a wide range of cell separations, the...
Authors: Amirikian BPLoS Computational Biology - 2005-06-24

Spatial Reconstruction of Trajectories of an Array of Recording Microelectrodes

We present a method for estimating the locations of sites visited by an array of microelectrodes. The method relies on visualization of tracks made by electrodes coated in a fluorescent dye. These tracks are used to estimate the parameters of a simple geometrical model that generates coordinates for each recording site. We describe several ways to measure the error of this procedure and present experimental results from recordings in the motor cortex of macaque monkeys that suggest that errors are of the order of 230 μm. We also introduce a coordinate transformation that takes into account the convoluted structure of the cortex near sulci to conveniently visualize recording site locations in a rectilinear representation. This method greatly extends the capabilities of microelectrodes for studying the three-dimensional structure of topographic maps in the cortex.

The time and space of lexicality: a neuromagnetic view

Illuminating the neural mechanisms subserving lexico-semantic processing is requisite to further understanding the neurophysiological basis of the dyslexias. Yet, despite numerous functional neuroimaging experiments, the location and temporal behavior of brain regions mediating word-level language processing remain an area of debate. Such investigations typically utilize the word/pseudoword contrast within hemodynamic measurements, and report several left hemisphere regions that respond more strongly to pseudowords but fail to replicate neural areas unique to real word processing. The present experiment addressed this problem from a different perspective. Mainly, we hypothesized that the time course, but not the neuroanatomy, would show within-subject across-condition disparities. For that purpose, we applied dipole-modeling techniques to high-density magnetoencephalographic recordings of healthy subjects, and utilized excellent spatiotemporal accuracy to demonstrate significant across-condition differences in the time domain, along with indistinguishable neural correlates within-subject. In all participants, both words and pseudowords elicited activity in left perisylvian language areas, with words consistently...

Decoding of path-guided apparent motion from neural ensembles in posterior parietal cortex

We compared quantitatively the psychometric capacity of human subjects to detect path-guided apparent motion (PAM) and the accuracy of cell ensembles in area 7a to code the same type of stimuli. Nine human subjects performed a detection task of PAM. They were instructed to indicate with a key-press whether they perceived a circularly moving object when five stimuli were flashed successively at the vertices of a regular pentagon. The stimuli were presented along a low contrast circular path with one of 33 speeds (150-600°/s). The average psychometric curve revealed that the threshold for PAM detection was 314°/s. The minimum and maximum thresholds for individual subjects were 277° and 378°/s, respectively. In addition, the activity of cells in area 7a that were modulated by the stimulus position in real or apparent motion was used in a multivariate linear regression analysis to recover the stimulus position over time. Real stimulus motion was decoded...

Parietal Representation of Hand Velocity in a Copy Task

We recorded neural activity from ensembles of neurons in areas 5 and 2 of parietal cortex, while two monkeys copied triangles, squares, trapezoids, and inverted triangles and used both linear and nonlinear models to predict the hand velocity from the neural activity of the ensembles. The linear model generally outperformed the nonlinear model, suggesting a reasonably linear relation between the neural activity and the hand velocity. We also found that the average transfer function of the linear model fit to individual cells was a low-pass filter because the neural response had considerable high-frequency power, whereas the hand velocity only had power at frequencies below ∼5 Hz. Increasing the width of the transfer function, up to a width of 700-800 ms, improved the fit of the model. Furthermore, the Rsqr of the linear model improved monotonically with the number of cells in the ensemble, saturating at 60-80% for a filter width of...

Brain Mechanisms of Praxis

The chapter deals with the neural mechanisms of praxis, that is, purposeful motor actions. Three typical praxis tasks were used: copy geometrical figures, find exit routes in mazes, and construct objects from component parts. These tasks are commonly used in clinical neurology to determine the presence, and evaluate the severity, of constructional apraxia. Brain mechanisms were investigated using various methods and in different species, including experimental psychology (in human subjects and monkeys), fMRIFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. (in human subjects), and single cell recordings from multiple sites (in monkeys). The results obtained provided new insights into how the brain deals with dynamic visuomotor processes and carries out purposeful eupractic motor actions.

Participation of primary motor cortical neurons in a distributed network during maze solution: representation of spatial parameters and time-course comparison with parietal area 7a

Traditionally, primary motor cortex (M1) has been thought to be involved solely in planning and generating movements. Recent evidence suggests that the arm area of M1 plays a role in other functions, such as the representation of serial order (Pellizzer et al. 1995, Science 269:702-705; Carpenter et al. 1999, Science 283:1752-1757) and spatial processing (Georgopoulos et al. 1989, Science 243:234-236). Previous studies of such cognitive processes have used tasks in which a directed arm movement was required, raising a question as to whether this brain area is involved in cognitive processing per se, or whether such cognitive signals may be gated into the arm area of M1 only when arm movements are required. To study this question, we developed a task that required a spatial analysis of a complex visual stimulus, but required no arm movement as a response. In this task, monkeys were shown an octagonal maze. After an imposed...

Short-term memory effects on the representation of two-dimensional space in the rhesus monkey

Human subjects represent the location of a point in 2D space using two independent dimensions (x-y in Euclidean or radius-angle in polar space), and encode location in memory along these dimensions using two levels of representation: a fine-grain value and a category. Here we determined whether monkeys possessed the ability to represent location with these two levels of coding. A rhesus monkey was trained to reproduce the location of a dot in a circle by pointing, after a delay period, on the location where a dot was presented. Five different delay periods (0.5-5 s) were used. The results showed that the monkey used a polar coordinate system to represent the fine-grain spatial coding, where the radius and angle of the dots were encoded independently. The variability of the spatial response and reaction time increased with longer delays. Furthermore, the animal was able to form a categorical representation of space that was...

Figure copying in Williams syndrome and normal subjects

We evaluated the copying abilities of ten subjects with Williams syndrome (WS; age 6-14 years) and ten normally developing children (age 3-6 years) matched for mental age using the matrices component of the Kaufman Brief Intelligence Test (mKBIT). Each subject copied six figures, including line drawings of closed and open geometrical shapes (alone and in combination), crossed lines, and geometrical shapes made of distinct small, filled circles. Qualitatively, subjects of both groups made comparable copies, although several subjects with WS drew a continuous line when copying figures composed of distinct circles. Quantitatively, the goodness of the copies was assessed by three human observers who rated on an analog scale the similarity of each copy to its visual template. Ratings were converted to a scale from zero (completely different) to 100 (the same) for statistical analyses. We found the following. First, the overall goodness of copies of the templates was very similar...

Comparative and categorical spatial judgments in the monkey: "high" and "low"

Adult human subjects can classify the height of an object as belonging to either of the "high" or "low" categories by utilizing an abstract concept of midline that divides the vertical dimension into two halves. Children lack this abstract concept of midline, do not have a sense that these categories are directional opposites, and their categorical and comparative usages of high(er) or low(er) are restricted to the corresponding poles. We investigated the abilities of a rhesus monkey to perform categorical judgments in space. We were also interested in the presence of the congruity effect (a decrease in response time when the objects compared are closer to the category pole) in the monkey. The presence of this phenomenon in the monkey would allow us to relate the behavior of the animal to the two major competing hypotheses that have been suggested to explain the congruity effect in humans: the analog and semantic...

Catching for Real and Catching for Fun in Ecological Psychology. Focus on "Internal Models of Target Motion: Expected Dynamics Overrides Measured Kinematics in Timing Manual Interceptions"

The problem investigated in this article is at the heart of perceptual-motor control and is centered on the relevance and importance of taking dynamic (kinetic) variables of motion into consideration when intercepting moving targets. The take-home message is that the context of the situation makes all the world's difference: if you are trying to intercept a falling object, then you definitely rely on apparently internalized knowledge of gravity; but, when you play games with interception on a video screen using a mouse, you conveniently switch to a strategy based on the assumption of uniform motion, also a very appropriate knowledge in this case!

Neural Responses during Interception of Real and Apparent Circularly Moving Stimuli in Motor Cortex and Area 7a

We recorded the neuronal activity in the arm area of the motor cortex and parietal area 7a of two monkeys during interception of stimuli moving in real and apparent motion. The stimulus moved along a circular path with one of five speeds (180-540°/s), and was intercepted at 6 o-clock by exerting a force pulse on a semi-isometric joystick which controlled a cursor on the screen. The real stimuli were shown in adjacent positions every 16 ms, whereas in the apparent motion situation five stimuli were flashed successively at the vertices of a regular pentagon. The results showed, first, that a group of neurons in both areas above responded not only during the interception but also during a NOGO task in which the same stimuli were presented in the absence of a motor response. This finding suggests these areas are involved in both the processing of the stimulus as well as in...

Neural responses in motor cortex and area 7a to real and apparent motion

The neural activity in area 7a and the arm area of motor cortex was recorded while real or path-guided apparent motion stimuli were presented to behaving monkeys in the absence of a motor response. A smooth stimulus motion was produced in the real motion condition, whereas in the apparent motion condition five stimuli were flashed successively at the vertices of a regular pentagon. The stimuli moved along a low contrast circular path with one of five speeds (180-540 deg/s). We found strong neural responses to real and apparent motion in area 7a and motor cortex. In the motor cortex, a substantial population of neurons showed a selective response to real moving stimuli in the absence of a motor response. This activity was modulated in some cases by the stimulus speed, and some of the neurons showed a response during a particular part of the circular trajectory of the stimulus; the preferred...

Electrical stimulation driving functional improvements and cortical changes in subjects with stroke

It has been proposed that somatosensory stimulation in the form of electromyographically triggered neuromuscular electrical stimulation (NMES) to the peripheral nerve can influence functional measures of motor performance in subjects with stroke and can additionally produce changes in cortical excitability. Using a controlled, double-blind design, we studied the effects of intensive (60 h/3 weeks) treatment at home with NMES compared with a sham treatment, applied to the extensor muscles of the hemiplegic forearm to facilitate hand opening in 16 chronic stroke subjects. We investigated improvement in functional use of the hand and change in cortical activation as measured by fMRIFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc.. Following treatment, subjects improved on measures of grasp and release of objects (Box and Block Test and Jebsen Taylor Hand Function Test [JTHFT]: small objects, stacking, heavy cans), isometric finger extension strength, and self-rated Motor Activity Log (MAL): Amount of Use and How Well score. The sham...
Authors: Kimberley TJ, Lewis S, Auerbach EJ, Dorsey L, Lojovich JM, Carey JRExperimental Brain Research - 2004-02-01

Neural Activity in Primate Parietal Area 7a Related to Spatial Analysis of Visual Mazes

Cognitive psychological studies of humans and monkeys solving visual mazes have provided evidence that a covert analysis of the maze takes place during periods of eye fixation interspersed between saccades, or when mazes are solved without eye movements. We investigated the neural basis of this process in posterior parietal cortex by recording the activity of single neurons in area 7a during maze solution. Monkeys were required to determine from a single point of fixation whether a critical path through the maze reached an exit or a blind ending. We found that during this process the activity of approximately one in four neurons in area 7a was spatially tuned to maze path direction. We obtained evidence that path tuning did not reflect a covert saccade plan insofar as the majority of neurons active during maze solution were not active on a delayed-saccade control task, and the minority that were active on both...
Pages: 12024-03-13 through 2022-08-0522022-07-22 through 2021-05-2732021-05-18 through 2020-05-1842020-05-01 through 2018-09-0152018-09-01 through 2017-09-0162017-08-22 through 2016-06-1172016-06-01 through 2015-08-0182015-08-01 through 2014-04-0192014-01-01 through 2012-09-06102012-08-28 through 2010-10-28112010-09-01 through 2009-03-01122009-03-01 through 2007-06-01132007-06-01 through 2005-11-01142005-11-01 through 2004-01-01152004-01-01 through 2001-01-01162000-10-01 through 1999-01-01171998-11-15 through 1996-11-01181996-11-01 through 1994-12-01191994-11-01 through 1992-12-01201992-12-01 through 1991-03-01
RSS Feed